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On the Bose Gas with Local Mean-Field Interaction 
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A Bose gas model is considered where the interaction term is proportional to 
the integral over the square of the local particle density. This model exhibits a 
phase transition with the same critical behavior as the usual mean-field (imper- 
fect) Bose gas, but only generalized condensation may occur, due to boundary 
conditions. 
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INTRODUCTION 

As a very simple interacting Bose gas model  the so-called imperfect or  
mean-field Bose gas has long been investigated (1 3) and can be said to be 
completely known and understood.  But this model  has one big disadvan- 
tage m a k i n g  it inappropriate  for modeling real interacting systems: It 
ignores the spatial and energetic distribution of the particles. Therefore, 
several modifications of  the mean-field model  have been proposed and 
investigated, such as the H u a n ~ Y a n g - L u t t i n g e r  model (4 6) or the van der 
Waals limit of  a fully interacting Bose gas, which gives, if there is no 
external potential,  the same pressure as the mean-field model. (s'9) 

The local mean-field model presented in this paper  seems to be close 
to the van der Waals limit from the physical point  of  view: It gives the 
same scaled particle density for the g round  state, even in the case of  a 
scaled external potential,  as can be shown by a simple variation ansatz 
after neglecting the kinetic energy in compar ison  with potential  and inter- 
action energy. 

However,  it requires different mathematical  techniques: The local 
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mean-field Hamiltonian is defined without a limiting procedure. Further- 
more, since the system Hamiltonian commutes with the free Hamiltonian, 
it makes sense to compute expectation values of occupation numbers, par- 
ticle densities, etc. In particular, it will be demonstrated that there may not 
occur Bose condensation (in the usual sense of macroscopic occupation of 
the single-particle ground state), but only generalized condensation in the 
sense defined in ref. 10. 

Throughout this paper, I will consider, for the sake of simplicity of 
calculations, a Bose gas contained in a d-dimensional (d~> 3) cubic box 
with Dirichlet boundary conditions on two opposite faces and periodic 
boundary conditions on the remaining surface. This can be interpreted as 
the model of a Bose gas enclosed between two hard walls at macroscopic 
distance. 

The case of one attractive and one repulsive boundary instead of two 
Dirichlet boundaries, as described for the free Bose gas in ref. 11, and the 
effect of a scaled external potential (which gives a pressure different from 
that of the mean-field model) will be considered in a forthcoming paper. 

1. DESCRIPTION OF THE M O D E L  

Given L > 0 ,  denote VL = [--L/2,  L/2] d ix  [0, L]. Let hL be the 
one-particle Hamiltonian, acting in the Hilbert space J fL=L2(VL) .  The 

o dF(hL), acting in the symmetric Hamiltonian of the free Bose gas is H L = 
Fock space 

oo 

n t i m e s  

Now let { ek. L } k ~ n be the set of eigenvalues of hL corresponding to the 
normalized eigenfunctions { fk, L } k ~ tc c WL, and let a ( f ) ,  a + ( f )  denote the 
usual annihilation and creation operators in f f~ .  We get 

H~ = ~ ek, Lnk, L 
k E K  

where nk, c = a + ( f k ,  L)a( fk ,  c) is the operator of the number of particles in 
the k th eigenstate. 

The mean-field (imperfect) Bose gas is given by the Hamiltonian 

a 

H E ~ " - = H ~  with a>O,  NL = ~ nk, L 
k ~ K  
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If we introduce the mean particle density operator PL = L -dNL, w e  can 
1 r d  2 rewrite the interaction term as 5aL PL" 

In the following, we will consider a Bose gas with an interaction term 
behaving locally like the mean-field interaction: We introduce the local 
particle density operator 

pL(X)= ~. ]fk, L(X)[ 2 nk, a with x e  VL 
k e K  

and define the Hamiltonian of the local mean-field Bose gas as 

af " p2(x)  dx (1) HE=H~ vL 

If the Hamiltonian of one particle with mass m in the volume VL is 
given by hE = --(h2/2m)A with periodic or quasiperiodic boundary condi- 
tions, then automatically Ifk, c(X)12=L -d for any k,x, and hence 

a __  ~ a  H L-  H E. However, it does not remain true if other boundary conditions 
are posed. 

In the present paper, we start from the one-particle Hamiltonian 

hE -- A (2) 
2m 

on V L, with boundary conditions 

f [x~=o=f [xd=c  =0 ,  fix,= L/2 = f i x , =  c/2 

8f for l = l  ..... d - 1  
~ft x,= c/2 ~xl xt= L/2' 

(3) 

Under 
x (k~+ . . .  + k 2  1+k,~/4), 

fk, r(X)=21/2L-d/ZexPl~(klXl + ... +ka_lX a ~)]sin(LkdXd ) 

a ( N 2 + l  Z N~,L) H~= ~,c ~ ek'Ln~'L +-2s 2 j ~  

with 

this assumption, we obtain K = Z d - t x N ,  ek, L=(2h2n2/mL 2) 

(4) 

N / ,L  z E Hk, L 

k ~ K  
k d = j 
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2. T H E  G R O U N D  STATE 

The main advantage of the model in comparison with the usual mean- 
field model can be shown by considering the ground state of the system: 
Let p = (PL)  be the given mean particle density. The ground state of /4~ 
is established if all particles are in the state with index (0 ..... 0, 1). This 
implies a scaled local particle density (pL(yL))  = 2p sin2(~yd), with y ~ V1. 
Obviously, such an essentially inhomogeneous particle distribution is 
untypical for real interacting systems. Now we will show that, in the local 
mean-field model, in the ground state, @ L ( y L ) ) ~ p  for L--,oo and 
y ~ VI\~?VI: Denote by ak the actual occupation number of the k th state 
at zero temperature, and let 

k ~ K  
kd - - j  

Obviously, one has ak = 0 if k'va 0 [denoting here and in the sequel k ' =  
( k l  ..... kd-1)]. Thus, it remains to solve the extremal value problem 

i a j = 1 2m L 2 sj + ~-d j-1 S~ = minimal 

~ Sj = pL d 
j = l  

s~>O 

It is easy to see that the sequence {sj} is monotonically decreasing and 
finite. Let J =  min{j: s j=  0}. Now we solve the extremal value problem 

sj + -@j~=l sj - t sj-- pL d = minimal 

where the Lagrange multiplier t can be found via the given total particle 
number, and J is to be chosen in a way that sj = 0 is fulfilled. If L is large, 
then it will be sufficient to solve this problem for arbitrary real sj (the 
resulting error in the local particle density will become small), which can 
be done explicitly. Hence we get approximately 

{3amL2p) 1/3 t=(9a2h2rc2p2"]l/3 

t -  j < J  
2m -~  J' 

sj--- (0 ,  else 
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The result indicates that macroscopic occupation of any one-particle state 
does not occur (the occupation numbers are of order L J-  2/3). 

Inserting now the result into the formula for the local particle density 
and replacing the sum by an integral, we obtain approximately 

with 

( p r ( x ) ) = p ( l + 3 q  2 c o s q - 3 q  3sinq) 

q = (12am~rp/h2L) 1/3 xd 

For small q, the local density behaves asymptotically as (p/10) q2. Since the 
characteristic length scale is of order L 1/3, we obtain ( p L ( y L ) ) ~ p  as 
L-~ oe, for any y ~ V 1 \ 0 V~, which agrees with our intuition. 

3. THE G R A N D  C A N O N I C A L  PRESSURE 

Given the inverse temperature /3= (kBT) -~, with kB denoting the 
Boltzmann constant and T the temperature, and the chemical potential #, 
one can evaluate the grand canonical pressure pa(/~, #) via the grand 
canonical partition function 

~f~(fl,/~) = Tr exp[ - f i (H~  -/~NL)] 

a s  

p~(fl, # ) =  lim p~(fl, fa) 
L ~ o~ 

where p{(fi, I~) = (ilL d)- ~ In ~ ( f l ,  #). In this section, I will show that the 
pressure of the local mean-field Bose gas coincides with/~a(fl, #), the grand 
canonical pressure of the mean-field Bose gas, as derived in ref. 3. 

Since the interaction term commutes with the free Hamiltonian, we 
can use the occupation number representation for the grand canonical 
partition function: 

~ (~+)K k 

a ( +5Z  N2+ jZ 
where the sj are defined as in the previous section, and 

N = ~ s j  
j = l  
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Analogously as in ref. 3, let us introduce an arbitrary (energy-valued) 
parameter e ~< 0, and get 

~ ( ~ ,  ~)= 
Z exp { - f l  L 2 U \  "~- 2 j E  1 

a e ( Z + )  K = 

(5) 

On one hand, we have 

a { N 2  ~d~-~l ) Ld 2Ld\ + ~ -(U-~IN>. aN2 �9 = ~ -  (# - c~)N>~ - ~a (# - (X)2 

and hence we get, as outlined in ref. 3, 

Lr~(fl, #) ~< exp [ flLd ] 
L 2a  (# - ~ ) 2  '="~" t ( f l '  ~) 

which implies 

( g _ a ) 2  
lim sup p~(fl, #) <~ pO(fi, ~) + _ _  (6) 

L ~  r 2a 

Before I continue the calculation of the pressure, I introduce some 
notations: 

F(Ld)( E) = L -d card {k e K: G,L <~ E} 

Ff -X) (E)  = L d+ 1 card {k 'ey_d-t:  2hZrC2mL 2 Ik'12 ~< E} 

~(0( E = 1 { mE']'/2 
FU)(E)=li~m~ eL ) r ( l /2+l) \2-~-~J  ' 

r(o tt~ U) - fir a#r --r, Ltt"~ - - -  In 

l = d - l , d  (7) 

1 - e x p [ - f l ( E - # ) ]  
dF~(E) (8) 

fo r /~<0;  r = 0 ,  1, 2; l = d - 1 ,  d; and 

i~o(fi, ff) l im I (~ r162 [ m ~t/2 = L ~ r,L\Y, ~t)-= ~2--~-~) GI/2 + 1  r l - e x p ( f l ] 2 ) ]  
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for # < 0, where 

F(p) = f o  xp le -x dx (p > O) 

:zo zn  

Gp(Z)  = nS ~ (IZl < 1) 

Finally, we set, for e ~< 0, t e Z +, 

oxp[_   
{o_, e (Z+)~d I: k'eZ_d-I 

Now it is easy to see that (5) can be rewritten as 

s e ( 2 + )  N j = l  

[ ,10, xexp ---~-L ~L d a -4-~j= 1 

In order to estimate this sum from below, we diminish the summation 
range, leaving only a finite subset, and replace the items on the remaining 
index set by appropriate functions, for the purpose of getting a lower 
bound equal to that in (6) for a certain value of the parameter c~. 

Let 6 ) 0 ,  x~>0, 0 < 7 <  1, 0 < 2 <  1, L>0 ,  J s  [~, and define 

t { I ~ L d - 7 ] }  for O<j<~6L "~ 

Mj= [ ( 1 - 2 )  La�9 lI(a-1)(fi, cc--e(o,Y~,L)-- l, (l + 2) L a - I 1 , L  (11) 

xI~a[i)(fl, c~--e(o,y),L)+l]c~2+ for cSLT<j<J 

{0} for j>~J 

with [t] denoting the integer part of t. 
E co For s X j= ~ Mj we obtain 

J 1 
( 1 - 2 )  Z ZI~d,[')(fl, c~--e(o,J),C) + x + O ( J L - a )  

j_ [6Ly] 

N 

J 1 I( a 1)~R ' O(JL-d) ~<(1+2) ~, L l,L ~" c~--e(o,y),r) + x +  
j =  [,SL'/] 

822/58/5-6-24 
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which can be rewritten as 

Let us denote 

(1 - 2)  I]a)(~, c~) + x + O ( L  7 1 In L )  

+ 0 e-ar176 + O(JL a) 

N 
~<~--5~< (1 + 2 )  I~d)(fi, CO+X+ O(JL -d) 

R I =  sup "s~ X <oo  
a j=~ 

Further, we get 

1 ~176 ( ~ d )  2 l x  2 1 J - 1  1 
~Y, ~ 7  L ~+~ Y~ (1+,~1~ 

= 1 j =  [6L'~'] 

x (I~a[ t)(/~, ~ _ e(o,j),L))2 

1 x 2 1 
< ~ ~- L -7 + ~ (1 + )~)2 i~a,(~, O) 

xl~d[ll ~ , e _ ~ m  32L2, 2 +o(L-1)=:R2 

(12) 

(13) 

Hence we have 

~e~(/~,/~) ~> exp - R~ - R2 ~ qsj, c( p, ~, s) 
j ss Mj 

resp. 

p~(~,  ~)/> ~ - Ri - R2 ~ / ~ L ~  , 

a [ ( # - - c ~  2 ] o 
=2k\--2-/  - R 1 - R ~  +pAB, c~) 

1 ~ Zs~Mj~j,L(t~,C~,S) 
+ ~ j ~ l  In Zs~z+ 45j, L(fl, ~, S) (14) 

NOW let us estimate the sum in (14). For this purpose, split it into four 
partial sums: Z~, with j running from 1 to [-3LV]; Y',2, with j from 
[6L ~] + 1 to J ' -  1; Z3, w i th j  between J' and J -  1; and, finally, Z4, with 

j ~> J. The indices J, J '  are defined in the following way: 
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I(2a[ l)(fi, ~ _ e(o,j),L) 
J ' = m a x  j e N : L a  l~2l_i(d_l)(R L 1,L te, c~-e(o,j~,r)] 2 

Appropriate estimations of I[ac ~) by linear 
1 4 d -  1, lead to the inequalities 

(2m)~/2 [ d-1 ]1/2 
h- -T-  L ~ + - - -F  ln(d~) 

(15) 

~<~} (16) 

combinations of x rT(~, 

~<J 

-< (2m)1/2 L [ e  + 2 d -  1 ql/2 
"~ h ~  [ ~ l n 2 + - ~ - - l n ( c L ) J  (17) 

with c = [m/(2gflh2)] 1/2, and, 

(2m)'/2 [ 2 )~ d-1 11/2 
h ~  L c~ + ~ In 5 + - ~ - -  ln(cL) 

~<J' 

(2m)1/2 I ~ + ~ l n 2 +  ( < ~ L  @ l n ( c L ) ]  '/2 18) 

for .sufficiently large L. 
Before we estimate Z l ,  523, and ~a ,  note that 

exp[sfi(c~ - e(o,j),L)], and 

~j.L(fl, C~, S) = exp[L a ~I(d0,L l)(fl, ~ _ e(o,j),L)] 

This implies 

~1 ~ Ld "/ ~(0~ -- C(O,j),L) 
j = l  

-- La -  lI(a--O,L 1)(R~r', C~ -- e(o,j),L)'~ 
3 

~((~ZY){~zd-Yfl( O~-h27"~2-~m ~2L27 2) -zd-lI(Od'L 1)(~, ~)j; 

=flo:xL a fih27c2x(~2Ld+2v 2 6i (d-1)(  a ~ ) L a - I + 7  
2m o,L ~', 

= fio~xL a + o(L d) (19) 
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Further, we have 

E4 = 
j ~ J  

j ~ J  

- - L d - l l  ( d - 1 ) ( R  c~- e(o,j),L)} 
O,L ~t", 

{ - L  a ~c ~-~ exp[fl(c~ - e(o,~),L)] } [1 + O(L-1)] 

(20) 

(21) 

{2 I( )1 >~-L%d-1[I+O(L-~)] Lexp fl ~ - - ~ m  y~ dy 

+ l exp[fi(a - e(o,j),L) ] } 

=_Laca_l[l+O(L_l)]~(2m)l/2et~f(~ e -~ dz 

+ L exp[fl(~-e(o,s),c)]} 

>I-L%~-~[I+O(L-~)] ( - - - ~ n  exp_fi~ 2m \ L /  JhTr(J/L) 

1 e(o, Ji, D]}  + ~ exp[fl(~ - 

> 1 - \ . ~  +1 [1+0(L-~)1=0(l) 

(with c as above), due to (15), and 

J~ '  {ln 

>I ( S -  J'){fl(~ - e~o,J~,L)(1 + ~) L ~- ~Xid~ ~}(fl, ~ -- e(o,~),L) 

X ln[22L a- lI(a- ~)(fl, ~ -- e(o,J),r) ] 1,L 

- -  ~ " O , L  t / J ~  

= O(L(ln L) 1/2) 

due to (15)-(18). Finally, note that 

s E M  s + 
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is a probability measure on Y+ with expectation value r d ~r(d z) * I , L  

(fi, c~--e(o,j),r) and variance L d lI(d2,L 1)(fl, c~--e(o,j),L). Assumption (16) 
and the Tchebyshev inequality imply that 

J'-- I f I~2dZ ~)(fl, ~--e(o,j).c) 
Z; />  ~ In 1 -  

j=CaL~']+1 ( Ld 122[I~dL1)(fl, ~--e(o,j),L)]2J 

- 2  In 2 : ' -  1 i i~2aL 1)( /~,  a - -  e(O,j),r) (22) 
>1 Ld-2~2 2 L [[~dL1)(fl, ~--e(o, j ) ,L)]  2 

j =  [3L7]  + 1 

Now we fix a value Eo > (h2rc2/2rn) 62L27-2 in such a way that, for E >  Eo, 

[I~dL-~(~, ~ - Z ) ] '  "~ 2 

(with c as above), and split the sum in (22) into two parts, where e(0,y).L 
is greater (resp. less) than or equal to E 0. In the L ~ oo limit, both parts 
tend to Riemann integrals; the first is finite for ~ < 0 [with an upper bound 
of O(L ~-~) independent of ~]; the second one can be estimated using the 
inequality 

t 2 i eZYdy 1 ~,2 

(cf. ref. 12), which gives a bound of O(L a- l(ln L)-1/2). Thus we get 

Y:2 = O(L(ln L)-1/2) (23) 

Inserting (19)-(21) and (23) into (14), we obtain 

pL(fl, l~)>~ - R 1 - R 2  +otx+O(L '  1)+pO(fl,~) (24) 

If/2 < apc(fl) = aI~d)(fl, 0), we choose ~ such that 

I~ - ~ = a I ~ d ) ( f l ,  ~ )  (25) 

and set x = 0 ,  3 =0.  This implies [using (12) and (17)] 

NL a _ - -  ,U--a c~ ~< 2i~d)(fi, ~) + O( L~ 1 In L) 

and hence 

lim R, ~<),2[pc(fi)]2 
L ~ o c  
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From (13), we conclude that 

lim R2 = 0 
L ~ o a  

(26) 

Since 2 can be chosen arbitrarily small, we obtain 

lim inf p~(fi, #) >t pO(fi, ~) -t 
L ~ e o  

( / / - -  0~) 2 

2a 

and, together with (6), 

pO(/~, u) = pO(/~, ~) 
(/~_ a)2 

2a 

where e satisfies (25). 
Now suppose # >~ apc(fi). We choose some 3 > 0, c~ < 0 and set 

x = ~ / a  - p , ( t ~ )  

From (12) and (17) we get 

NL -a ~a  7 <~2p~(fl)-c~ _ _ + O ( L  7 l l n L )  
a 

and hence 

l i m  RI 

Furthermore, (26) remains true. Choosing now 2 and -c~ arbitrarily small, 
we obtain from (24) and (6) 

[2 2 
po(•, u) = p0(fl, 0) + ~a 

which coincides with the pressure of the imperfect Bose gas outlined in 
refs. 3 and 4. 

This implies that such quantities as the mean energy density or the 
mean kinetic energy density will also coincide with the corresponding 
values for the mean-field model. Since the kinetic energy density attains its 
maximal value (for given fl) at the critical density p,.(fl), while the total 
energy density continues to increase with increasing mean particle density, 
the further growth of the total energy density is caused by a macroscopic 
amount  of particles with almost zero kinetic energy, which do not con- 
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t r ibu te  to the  m e a n  k ine t i c  ene rgy  densi ty ,  i.e., there  occurs  Bose  c o n d e n s a -  

t ion  in the  gene ra l i zed  sense, as def ined  in ref. 10. O n  the  o t h e r  hand ,  

m a c r o s c o p i c  o c c u p a t i o n  of  any  s ing le-par t ic le  s ta te  w o u l d  give rise [cf. 

(4 ) ]  to a m a c r o s c o p i c  v a r i a t i o n  of  the  m e a n  i n t e r a c t i o n  ene rgy  dens i ty  

wi th  respec t  to the  c o r r e s p o n d i n g  va lue  for the  mean- f i e ld  mode l ,  hence  

c o n d e n s a t i o n  c a n n o t  occu r  in the  usua l  u n d e r s t a n d i n g  of  the  m a c r o s c o p i c  

o c c u p a t i o n  of  s o m e  s ing le -par t ic le  state.  
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